您的位置:首页>动态>

高一数学函数知识点归纳整理图(高一数学函数知识点归纳整理)

大家好,小高来为大家解答以上问题。高一数学函数知识点归纳整理图,高一数学函数知识点归纳整理很多人还不知道,现在让我们一起来看看吧!

高中数学必修一知识结构图如何从数学学渣逆袭成数学学霸?学霸支招:如何提高高三数学成绩高中文科数学公式大全

一、高一数学函数知识点归纳

1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A }叫做函数的值域。

2、函数定义域的解题思路:

⑴ 若x处于分母位置,则分母x不能为0。

⑵ 偶次方根的被开方数不小于0。

⑶ 对数式的真数必须大于0。

⑷ 指数对数式的底,不得为1,且必须大于0。

⑸ 指数为0时,底数不得为0。

⑹ 如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。

⑺ 实际问题中的函数的定义域还要保证实际问题有意义。

3、相同函数

⑴ 表达式相同:与表示自变量和函数值的字母无关。

⑵ 定义域一致,对应法则一致。

4、函数值域的求法

⑴ 观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。

⑵ 图像法:适用于易于画出函数图像的函数已经分段函数。

⑶ 配方法:主要用于二次函数,配方成 y=(x-a)2+b 的形式。

⑷ 代换法:主要用于由已知值域的函数推测未知函数的值域。

5、函数图像的变换

⑴ 平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。

⑵ 伸缩变换:在x前加上系数。

⑶ 对称变换:高中阶段不作要求。

6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y与之对应,那么就称对应f:A→B为从集合A到集合B的映射。

⑴ 集合A中的每一个元素,在集合B中都有象,并且象是唯一的。

⑵ 集合A中的不同元素,在集合B中对应的象可以是同一个。

⑶ 不要求集合B中的每一个元素在集合A中都有原象。

7、分段函数

⑴ 在定义域的不同部分上有不同的解析式表达式。

⑵ 各部分自变量和函数值的取值范围不同。

⑶ 分段函数的定义域是各段定义域的交集,值域是各段值域的并集。

8、复合函数:如果(u∈M),u=g(x) (x∈A),则,y=f[g(x)]=F(x) (x∈A),称为f、g的复合函数。

二、高一数学函数的性质

1、函数的局部性质——单调性

设函数y=f(x)的定义域为I,如果对应定义域I内的某个区间D内的任意两个变量x1、x2,当x1< x2时,都有f(x1)<f(x2),那么y=f(x)在区间D上是增函数,D是函数y=f(x)的单调递增区间;当x1< x2时,都有f(x1)>f(x2),那么那么y=f(x)在区间D上是减函数,D是函数y=f(x)的单调递减区间。

⑴函数区间单调性的判断思路

ⅰ在给出区间内任取x1、x2,则x1、x2∈D,且x1< x2。

ⅱ 做差值f(x1)-f(x2),并进行变形和配方,变为易于判断正负的形式。

ⅲ判断变形后的表达式f(x1)-f(x2)的符号,指出单调性。

⑵复合函数的单调性

复合函数y=f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律为“同增异减”;多个函数的复合函数,根据原则“减偶则增,减奇则减”。

⑶注意事项

函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成并集,如果函数在区间A和B上都递增,则表示为f(x)的单调递增区间为A和B,不能表示为A∪B。

2、函数的整体性质——奇偶性

对于函数f(x)定义域内的任意一个x,都有f(x) =f(-x),则f(x)就为偶函数;

对于函数f(x)定义域内的任意一个x,都有f(x) =-f(x),则f(x)就为奇函数。

小编推荐:高中数学必考知识点归纳总结

⑴奇函数和偶函数的性质

ⅰ无论函数是奇函数还是偶函数,只要函数具有奇偶性,该函数的定义域一定关于原点对称。

ⅱ奇函数的图像关于原点对称,偶函数的图像关于y轴对称。

⑵函数奇偶性判断思路

ⅰ先确定函数的定义域是否关于原点对称,若不关于原点对称,则为非奇非偶函数。

ⅱ确定f(x) 和f(-x)的关系:

若f(x) -f(-x)=0,或f(x) /f(-x)=1,则函数为偶函数;

若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,则函数为奇函数。

3、函数的最值问题

⑴对于二次函数,利用配方法,将函数化为y=(x-a)2+b的形式,得出函数的最大值或最小值。

⑵对于易于画出函数图像的函数,画出图像,从图像中观察最值。

⑶关于二次函数在闭区间的最值问题

ⅰ判断二次函数的顶点是否在所求区间内,若在区间内,则接ⅱ,若不在区间内,则接ⅲ。

ⅱ 若二次函数的顶点在所求区间内,则在二次函数y=ax2+bx+c中,a>0时,顶点为最小值,a<0时顶点为最大值;后判断区间的两端点距离顶点的远近,离顶点远的端点的函数值,即为a>0时的最大值或a<0时的最小值。

ⅲ 若二次函数的顶点不在所求区间内,则判断函数在该区间的单调性

若函数在[a,b]上递增,则最小值为f(a),最大值为f(b);

若函数在[a,b]上递减,则最小值为f(b),最大值为f(a)。

三、高一数学基本初等函数

1、指数函数:函数y=ax (a>0且a≠1)叫做指数函数

注意:⑴由函数的单调性可以看出,在闭区间[a,b]上,指数函数的最值为:

a>1时,最小值f(a),最大值f(b);0<a<1时,最小值f(b),最大值f(a)。

⑵ 对于任意指数函数y=ax (a>0且a≠1),都有f(1)=a。

2、对数函数:函数y=logax(a>0且a≠1)),叫做对数函数

3、幂函数:函数y=xa(a∈R),高中阶段,幂函数只研究第I象限的情况。

⑴所有幂函数都在(0,+∞)区间内有定义,而且过定点(1,1)。

⑵a>0时,幂函数图像过原点,且在(0,+∞)区间为增函数,a越大,图像坡度越大。

⑶a<0时,幂函数在(0,+∞)区间为减函数。

当x从右侧无限接近原点时,图像无限接近y轴正半轴;

当y无限接近正无穷时,图像无限接近x轴正半轴。

幂函数总图见下页。

4、反函数:将原函数y=f(x)的x和y互换即得其反函数x=f-1(y)。

反函数图像与原函数图像关于直线y=x对称。

本文到此结束,希望对大家有所帮助。

免责声明:本文由用户上传,如有侵权请联系删除!