大家好,小高来为大家解答以上问题。高中数学公式大全理科,高中数学公式大全很多人还不知道,现在让我们一起来看看吧!
一、高中数学常用公式
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a,-b-√(b2-4ac)/2a
根与系数的关系X1+X2=-b/aX1*X2=c/a 注:韦达定理
判别式b2-4a=0 注:方程有相等的两实根
b2-4ac>0 注:方程有一个实根
b2-4ac<0 注:方程有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n*2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py
直棱柱侧面积S=c*h
斜棱柱侧面积S=c'*h
正棱锥侧面积S=1/2c*h'
正棱台侧面积S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l
球的表面积S=4pi*r2
圆柱侧面积S=c*h=2pi*h
圆锥侧面积S=1/2*c*l=pi*r*l
弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r
锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h
斜棱柱体积V=S'L 注:其中S'是直截面面积,L是侧棱长
柱体体积公式;V=s*h圆柱体V=pi*r2h
正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径
余弦定理b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角
圆的标准方程(x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标
圆的一般方程x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0
抛物线标准方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py
直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h
正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2
圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l
弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r
锥体体积公式V=1/3*S*H
斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长
柱体体积公式V=s*h圆柱体V=pi*r2h
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B))
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
2+4+6+8+10+12+14+…+(2n)=n(n+1)5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
常用导数公式
1、y=c(c为常数)y'=0
2、y=x^ny'=nx^(n-1)
3、y=a^xy'=a^xlna
4、y=e^xy'=e^x
5、y=logaxy'=logae/x
6、y=lnxy'=1/x
7、y=sinxy'=cosx
8、y=cosxy'=-sinx
9、y=tanxy'=1/cos^2x
10、y=cotxy'=-1/sin^2x
11、y=arcsinxy'=1/√1-x^2
12、y=arccosxy'=-1/√1-x^2
13、y=arctanxy'=1/1+x^2
14、y=arccotxy'=-1/1+x^2
二、高中数学常用定理
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等
4、同角或等角的余角相等
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
14、两直线平行,同旁内角互补
15、角形两边的和大于第三边
16、角形两边的差小于第三边
17、三角形内角和定理三角形三个内角的和等于180°
18、直角三角形的两个锐角互余
19、三角形的一个外角等于和它不相邻的两个内角的和
20、三角形的一个外角大于任何一个和它不相邻的内角
21、全等三角形的对应边、对应角相等
22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
24、有两角和其中一角的对边对应相等的两个三角形全等
25、边边边公理(SSS)有三边对应相等的两个三角形全等
26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
27、在角的平分线上的点到这个角的两边的距离相等
28、到一个角的两边的距离相同的点,在这个角的平分线上
29、角的平分线是到角的两边距离相等的所有点的集合
30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
31、等腰三角形顶角的平分线平分底边并且垂直于底边
32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33、等边三角形的各角都相等,并且每一个角都等于60°
34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35、三个角都相等的三角形是等边三角形
36、有一个角等于60°的等腰三角形是等边三角形
37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38、直角三角形斜边上的中线等于斜边上的一半
39、线段垂直平分线上的点和这条线段两个端点的距离相等
40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42、关于某条直线对称的两个图形是全等形
43、如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形
48、四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理n边形的内角的和等于(n-2)×180°
51、任意多边的外角和等于360°
52、平行四边形的对角相等
53、平行四边形的对边相等
54、夹在两条平行线间的平行线段相等
55、平行四边形的对角线互相平分
56、两组对角分别相等的四边形是平行四边形
57、两组对边分别相等的四边形是平行四边形
58、对角线互相平分的四边形是平行四边形
59、一组对边平行相等的四边形是平行四边形
60、矩形的四个角都是直角
61、矩形的对角线相等
62、有三个角是直角的四边形是矩形
63、对角线相等的平行四边形是矩形
64、菱形的四条边都相等
65、菱形的对角线互相垂直,并且每一条对角线平分一组对角
66、菱形面积=对角线乘积的一半,即S=(a×b)÷2
67、四边都相等的四边形是菱形
68、对角线互相垂直的平行四边形是菱形
69、正方形的四个角都是直角,四条边都相等
70、正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71、关于中心对称的两个图形是全等的
72、关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74、等腰梯形性质定理等腰梯形在同一底上的两个角相等
75、等腰梯形的两条对角线相等
本文到此结束,希望对大家有所帮助。